

Medical chemistry- year1

Method of ExpressingConcentration Lecture no(7) part 2

By Assis.Teacher. Rana Hassan

Basic Of Science
College Of Dentistry
University Of Basrah

Normality

Number of gram equivalent of solute (Substance) dissolved in one litre (1000 ml) of solution is called as Normality.

Normality is indicated by (N).

Normality (N) =
$$\frac{No \ of \ gram \ equivalents}{Volume \ of \ solution \ in \ litres}$$

We have,

$$N = \frac{Eq}{V(L)}$$

no of g. eqv. =
$$\frac{\text{Mass in g}}{\text{Eqv. mass}}$$
 equivalent weight By substitution,

Normality =
$$\frac{\text{Mass of solute in g}}{\text{Eqv. mass} \times \text{Vol. of solution in L}}$$

example:

How many equivalents are in 1.60 L of 0.5 N H₃PO₄?

$$N = \frac{\text{# of equivalents}}{\text{Liter of solution}} = 0.50 \text{ N} = \frac{\text{"X" equiv.}}{1.60 \text{ L}}$$

$$"\chi" = 0.80$$
 equivalents

example:

What is N of 80.0g NaOH dissolved in 1.5 L of solution?

$$80.0g \text{ NaOH }_{X} \quad \frac{1 \text{ equiv. NaOH}}{40.0g} = 2.0 \text{ equiv.}$$

$$N = \frac{\text{\# of equivalents}}{\text{Liter of solution}} = \frac{2.0 \text{ equiv.}}{1.5 \text{ L}} = 1.33 \text{ N}$$

Dilutions with Normality:

What if you wished to dilute a more concentrated Normal solution to a specific concentration. How would you do it?

$$N_i V_i = N_f V_f$$

Dilutions example:

A lab requires 500 mL of 0.20 N Sulfuric acid. You have a significant volume of $4.0 \text{ N H}_2\text{SO}_4$.

Solution:

$$N_iV_i = N_fV_f$$

$$0.20 \text{ N} \times 0.500 \text{ L} = 4.0 \text{ N} \times \text{"X"}$$

"X" =
$$0.025 L$$

Dilute 25 mL of 4.0 N Sulfuric acid to 500 mL.

Mole fraction (x)

Mole fraction(x):of any component in a solution is the number of moles of the component divided by total number of moles making up a solution.it is denoted by

Mole fraction (X)=
$$\frac{\text{Moles of component}}{\text{Total number of moles}}$$

making up the solution

$$X_A + X_B = 1$$

Sum of mole fractions is always equal to 1

For example, a solution is prepared by dissolving 1 mole of ethyl alcohol C₂H₅-OH in 3 moles of water (H₂O), where n_A and n_B represent the number of moles of ethyl alcohol and water respectively.

Then,
Mole fraction of ethyl alcohol =
$$X_A = \frac{n_A}{n_A + n_B}$$

= $\frac{1}{1+3} = \frac{1}{4} = 0.25$

Mole fraction of water =
$$X_B = \frac{n_B}{n_A + n_B} = \frac{3}{1+3}$$

= $\frac{3}{4}$ = 0.75

Result: Mole fraction of ethyl alcohol $X_A = 0.25$ Mole fraction of water $X_B = 0.75$

Sum of mole fractions is always equal to 1.

Mole fraction of ethyl alcohol = 0.25 Mole fraction of water = 0.75 Sum of mole fractions = 1.0

Percentage (%)

- Sometimes the concentration is expressed in terms of per cent (parts per hundred) also. Per cent Composition of a solution can be expressed as:
- Per cent W/W = Weight of solute/ Weight of solution X 100
- 2. Per cent V/V = Volume of solute/ Volume of solution X 100
- 3. Per cent W/V= Weight of solute/ Volume of solution X 100
- ▶ 1 %= 1gm of KCl ----- in 100 ml of water
- ▶ 10 % = 10 gm of KCl ----- in 100 ml of water
- ▶ 100 % = 100 gm of KCl ----- in 100 ml of water

%by weight(%w/w)

What is the % w/w of a solution if 3.00 grams of NaCl are dissolved in 17.00 g of water?

$$\%$$
w/w = $\frac{\text{mass of solute}}{\text{total mass of solution}} \times 100\%$

- mass of solute = 3.00 g
- mass of solution = 3.00 g + 17.00 g = 20.00 g
- (3.00 g / 20.00 g) x 100% = 15.0% w/w

%by volume(%v/v)

What is the % v/v of a solution if 20.0 mL of alcohol are dissolved in 50.0 mL of solution?

$$%v/v = {volume \text{ of solute} \over total \text{ volume of solution}} \times 100\%$$

- volume of solute = 20.0 mL
- volume of solution = 50.0 mL
- $(20.0 \text{ mL} / 50.0 \text{ mL}) \times 100\% = 40.0\%$

Parts per million

Parts per million is frequently employed to express the concentration of very dilute solutions and is express as PPM

A part per million (ppm) is one part of solute per million parts of solution. In

terms of defining equations, we can write:

$$m/m = ppm (m/m) = mass solute x 10^6$$

mass solution

$$V/V = ppm(v/v) = volume solute x 10^6$$

volume solution

$$m/v = ppm (m/v) = mass solute(g) x 10^6$$

volume solution (mL)

Formality

The concentration unit, formal, is similar to the more familiar molar concentration in that it is calculated as the number of moles of a substance in a liter of solution.

Formal concentrations are notated with the symbol (F)

Formal concentration (F)=
$$\frac{\text{no. of moles (mole)}}{\text{total volume (L)}}$$

NO .of moles (n)=
$$\frac{\text{mass (g)}}{\text{molar mass(g/mole)}}$$

Thank you