Medical chemistry- year1

Method of ExpressingConcentration

 Lecture no(7) part 2By Assis.Teacher. Rana Hassan

Basic Of Science
College Of Dentistry
University Of Basrah

example :

How many equivalents are in 1.60 L of $0.5 \mathrm{~N} \mathrm{H}_{3} \mathrm{PO}_{4}$?

$$
\begin{gathered}
\mathrm{N}=\frac{\text { \# of equivalents }}{\text { Liter of solution }}=0.50 \mathrm{~N}=\frac{\text { " } \mathrm{X} \text { " equiv. }}{1.60 \mathrm{~L}} \\
\text { " } \mathrm{X} \text { " }=\quad 0.80 \text { equivalents }
\end{gathered}
$$

example :

What is N of 80.0 g NaOH dissolved in 1.5 L of solution ?

$$
\begin{aligned}
& 80.0 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \text { equiv. } \mathrm{NaOH}}{40.0 \mathrm{~g}}=2.0 \text { equiv. } \\
& \mathrm{N}=\frac{\# \text { of equivalents }}{\text { Liter of solution }}=\frac{2.0 \text { equiv. }}{1.5 \mathrm{~L}}=1.33 \mathrm{~N}
\end{aligned}
$$

Dilutions with Normality:

What if you wished to dilute a more concentrated Normal solution to a specific concentration. How would you do it ?

$$
\mathbf{N}_{\mathrm{i}} \mathbf{V}_{\mathrm{i}}=\mathbf{N}_{\mathrm{f}} \mathbf{V}_{\mathrm{f}}
$$

Dilutions example :

A lab requires 500 mL of 0.20 N Sulfuric acid. You have a significant volume of $4.0 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$.

Solution :

$$
N_{i} V_{i}=N_{f} V_{f}
$$

$$
0.20 \mathrm{~N} \times 0.500 \mathrm{~L}=4.0 \mathrm{~N} \times \text { " } \times \text { " }
$$

$$
" X "=0.025 L
$$

Dilute 25 mL of 4.0 N Sulfuric acid to 500 mL .

Mole fraction (x)

Mole fraction(x) :of any component in a solution is the number of moles of the component divided by total number of moles making up a solution.it is denoted by (x).

$$
\begin{aligned}
\text { Mole fraction }(X)= & \frac{\text { Moles of component }}{\text { Total number of moles }} \\
& \text { making up the solution }
\end{aligned}
$$

$$
\begin{array}{l|l}
X_{A}+X_{B}=1 & \text { Sum of mole fractions is always equal to } 1
\end{array}
$$

For example, a solution is prepared by dissolving 1 mole of ethyl alcohol $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OH}$ in 3 moles of water ($\mathrm{H}_{2} \mathrm{O}$), where n_{A} and n_{B} represent the number of moles of ethyl alcohol and water respectively.
Then,
Mole fraction of ethyl alcohol $=X_{A}=\frac{n_{A}}{n_{A}+n_{B}}$

$$
=\frac{1}{1+3}=\frac{1}{4}=0.25
$$

Mole fraction of water $=X_{B}=\frac{n_{B}}{n_{A}+n_{B}}=\frac{3}{1+3}$

$$
=\frac{3}{4}=0.75
$$

Result: Mole fraction of ethyl alcohol $X_{A}=0.25$ Mole fraction of water $X_{B}=0.75$

Sum of mole fractions is always equal to 1.
Mole fraction of ethyl alcohol $=0.25$
Mole fraction of water $=0,75$
Sum of mole fractions $=1.0$

Percentage (\%)

- Sometimes the concentration is expressed in terms of per cent (parts per hundred) also. Per cent Composition of a solution can be expressed as:

1. Per cent $W / W=$ Weight of solute/ Weight of solution $X 100$
2. Per cent $V / V=$ Volume of solute/ Volume of solution $X 100$
3. Per cent $W / V=$ Weight of solute/ Volume of solution $X 100$

- $1 \%=1 \mathrm{gm}$ of KCl ----------- in 100 ml of water
- $10 \%=10 \mathrm{gm}$ of KCl ----------- in 100 ml of water
- $100 \%=100 \mathrm{gm}$ of KCl ----------- in 100 ml of water

\%by weight(\%w/w)

What is the $\% \mathrm{w} / \mathrm{w}$ of a solution if 3.00 grams of NaCl are dissolved in 17.00 g of water?
$\% \mathrm{w} / \mathrm{w}=\frac{\text { mass of solute }}{\text { total mass of solution }} \times 100 \%$

- mass of solute $=3.00 \mathrm{~g}$
- mass of solution $=3.00 \mathrm{~g}+17.00 \mathrm{~g}=20.00 \mathrm{~g}$
$-(3.00 \mathrm{~g} / 20.00 \mathrm{~g}) \times 100 \%=15.0 \% \mathrm{w} / \mathrm{w}$

\%by volume(\%v/v)

What is the $\% \mathrm{v} / \mathrm{v}$ of a solution if 20.0 mL of alcohol are dissolved in 50.0 mL of solution?
$\% \mathrm{v} / \mathrm{v}=\frac{\text { volume of solute }}{\text { total volume of solution }} \times 100 \%$

- volume of solute $=20.0 \mathrm{~mL}$
- volume of solution $=50.0 \mathrm{~mL}$
- $(20.0 \mathrm{~mL} / 50.0 \mathrm{~mL}) \times 100 \%=40.0 \%$

Parts per million

Parts per million is frequently employed to express the concentration of very dilute solutions and is express as PPM

A part per million (ppm) is one part of solute per million parts of solution. In terms of defining equations, we can write:
$\mathrm{m} / \mathrm{m}=$

$$
\operatorname{ppm}(\mathrm{m} / \mathrm{m})=\underset{\text { mass solution }}{\text { mass solute }} \times 10^{6}
$$

$v / v=$

$$
\mathrm{ppm}(\mathrm{v} / \mathrm{v})=\underset{\text { volume solution }}{\text { volume solute } \times 10^{6}}
$$

$\mathrm{m} / \mathrm{v}=$

$$
\underset{\text { vpm }(\mathrm{m} / \mathrm{v})=\text { mass solute }(\mathrm{g})}{\text { volume solution }(\mathrm{mL})} \times 10^{6}
$$

Formality

The concentration unit, formal, is similar to the more familiar molar concentration in that it is calculated as the number of moles of a substance in a liter of solution.

Formal concentrations are notated with the symbol (F)
Formal concentration $(F)=\frac{\text { no. of moles (mole) }}{\text { total volume }(L)}$
NO .of moles $(\mathrm{n})=\frac{\text { mass }(\mathrm{g})}{\text { molar mass }(\mathrm{g} / \text { mole })}$
Formal concentration $(F)=\frac{\text { mass }(g)}{\text { molar mass*total volume (L) }}$

Thank you

